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MATHEMATICAL MODELLING BY SYMBOLIC MATHEMATICAL COMPUTATION —
A COSMOLOGICAL APPLICATION
James C. Howard

Ames Research Center

SUMMARY

The advantages of symbolic mathematical computation are most evident in
problems analogous to those described in this report; that is, the application
of the method to reconstructing several existing cosmological models and their
associated trajectory equations. The field equations that govern the trajec-
tories of bodies in space have, in general, large numbers of terms, with each
term a complicated mathematical expression. The evaluation of these terms and
the derivation of the equations of the geodesics that describe the trajec-
tories of bodies in space, require a substantial amount of algebraic manipu-
lation and symbolic differentiation. For the models considered, the required
operations were executed with speed and efficiency on an IBM 360/67 computer.
For example, in the case of the nonhomogeneous Schwarzschild model, the com-
puter times required to formulate the field and trajectory equations were
0.74 and 0.30 minutes, respectively. By mechanization of the procedure in the
manner described, man hours are saved, the possibility of error is reduced,
and the scope of the inquiry may be extended.

INTRODUCTION

Many problems in mathematical physics involve the formulation of complex
models of physical systems or processes and the manipulation of large sets of
nonlinear partial differential equations. The manual performance of these
operations is time consuming, subject to human error, and in certain cases
impossible.

In recent years mathematical manipulation and the formulation of mathemat-
ical models have been facilitated by the use of digital computers equipped
with formula manipulation compilers (FORMAC) and by the development of com-
puter programs designed to perform a variety of non-numeric operations
(ref. 1). In references 2 and 3, it is shown how symbolic mathematical com-
putation was used to obtain the Christoffel symbols of the first and second
kinds for 12 orthogonal, curvilinear coordinate systems. In references 4 and
5 it is shown how an IBM 7094 digital computer, equipped with FORMAC, can be
used to derive the equations of motion of a particle in any curvilinear coordi-
nate system requested by the user. In reference 6 it is indicated how these
methods can facilitate the derivation of the Navier-Stokes equations of fluid
motion and the continuity equation.




The present report indicates how symbolic mathematical computation can be
used to formulate a variety of cosmological models. Each model is determined
by the metric of the Riemannian Space, and the only inputs required are the
metric coefficients of the fundamental quadratic form. For illustrative pur-
poses, only spherically symmetric static models are considered. It should be
emphasized, however, that the method described is equally applicable to less
restricted models, and nonstatic models can be formulated with equal facility.
The determination of the geodesics that describe the trajectories of bodies in
space requires that the appropriate potential functions be known. The rela-
tivistic analog of Poisson's equation, which in the Newtonian theory connects
a single gravitational potential function with the density of matter, is a
relation between the potential functions and the components of the energy
momentum tensor. In general, this relationship gives rise to 10 nonlinear
partial differential equations. The solution of these equations then yields
the potential functions and must precede any attempt to obtain the
corresponding trajectories.

ANALYSIS

Field and Trajectory Equations

Consider the equation of motion of a particle that is moving under the
influence of gravitational forces. When the equation is written in the nota-
tion of the tensor calculus, it assumes the following form (ref. 5):

i . j k
d2x* { 1} dx? dx ) -
m + 3.0y ——=—1]a. = V¢ (1)
<dt2 jk{ dt dt i
where 1i,j,k = 1,2,3
and . ..
ve = 23] - gt) 2 a, (2)
9X BXJ

In these equations the summation convention is assumed. That is to say,
if in any term an index occurs twice, the term is to be summed with respect to
that index for all admissible values of the index.

In relativistic mechanics, equation (1) is replaced by the following
trajectory equation (ref. 7):

i . Pk
a2x* i) dd dx*)
(dsz * {jk} ds  ds >‘ 0 (3)

i,j,k = 1,2,3,4




where the line element ds satisfies the fundamental quadratic form
ds?2 = g.. dx' dx’ (4)
1)
The Newtonian theory of gravitation connects a single potential function
¢ with the density of matter. In this theory, the gravitational potential
function is required to satisfy Poisson's equation (ref. 7).

V2¢ = -4mp (5)

At all points of space devoid of matter p = 0 and Poisson's equation
reduces to Laplace's equation

V2 = 0 (6)

The relativistic analog of Poisson's equation is the following tensor
equation (ref. 8).

1 -
Rij - -2—-Rgij + Agij = -KTij (7)
By raising indices, the field equations can be written in the alternative
form
i 1 i i i .
R7. - 56, R+ §.A = T~ 8
375 3 j (8)

Contraction of equation (8) yields
R - 4N = «T (9)
In regions of space devoid of matter, all the components of the energy

momentum tensor are zero, and equation (9) simplifie$ accordingly. In this
case

R = 4A (10)

When this result is substituted in equation (7), the field equations
assume the form

Rij = Agij (11)

Nevertheless, in empty space, the trajectories of bodies moving within
the solar system correspond with great precision to the simpler field equations
(ref. 8).

R.. =0 (12)

where



Rij = (ax ax? 10g/____[13} lBJHw, llJ}ax log/—>

(13)
o,8,i,j = 1,2,3,4
[glJ| (14)
og. og. 9g. .
(9,6] = 3=k - ik 2 (15)
’ 2\ . J i X
oX X 3X
o oK. .
[ij} = g™[15,K] (16)

Equation (12) is the relativistic analog of the Lapace equation. It
represents 10 nonlinear partial differential equations for the 10 unknown
functions g;5- Once a set of potential functions gij satisfying equa-

tion (8) or (12) is found, the corresponding trajectory equations can be
formulated.

COMPUTER APPLICATIONS

For the purpose of illustrating the modelling capability of symbolic
mathematical computation, a spherically symmetric static field is assumed.
This assumption implies that the metric tensors gij are spherically sym-

metric and independent of the time. Moreover, the metric tensors must be
chosen in such a way that the line element will reduce to the special relativ-
ity form for flat space-time. These considerations led to the adoption of the
following set of metric tensors for anisotropic space.

1
g, = _eL(x ) ~
8rp = ‘(Xl)z
> (17)
833 = -(x! sin x?
1
Buy = MO J



where the implicit functions L(xl) and M(xl) can be adjusted to account for
the distortion of space in the presence of matter. The corresponding space-
time interval is

1
as? = [-e" 0D @xh? - 2 ax?)? - o sin x? ax)? + MO ay?] am

where
dx* = ¢ dt
and
x! radial coordinate
x? polar angle coordinate
x> azimuthal angle coordinate

and for convenience the velocity of light is assumed equal to 1.

If the space is assumed to be isotropic, the metric tensors are modified
as follows:

1 N
g1 = Sk ()
_ _Lixb 1.2
g22 e (x7) ? (19)
1
g33 = —eL(x )(xl sin xz)2
_ MY
guy = © p

The space-time interval in the isotropic case is

ds? = [-eL(Xl) [(ax1)2 + <! ax®)?+ (2 sin x? ax¥)?] + eM(xl)(dx“)z} (20)

In order to demonstrate the feasibility of using symbolic mathematical
computation to obtain different models of the universe, a computer program1
was written that required only the postulated metric tensors as inputs.

IThe computer program and related documentation are available from
Computer Software Management and Information Center (COSMIC), Barrow Hall,
University of Georgia, Athens, Georgia, 30601.



Applications to Cosmological Models

Anisotropic model— The field equations and the corresponding trajectory
equations for this condition can be obtained by using the tensors defined in
equations (17). With these tensors as inputs to a 360/67 digital computer
which was programmed to derive models of the universe, the following output
was obtained.

The metric coefficients determine the gravitational model being studied.
In order that each run be identified with the correct inputs, the postulated
metric coefficients are printed out before the main results. In the case
under consideration, these have the following values

6(1,1) = -gk (X(1)
G(2,2) = -X(1)°

6(3,3) = -SIN*(X(2))X(1)°
G(a,4) = gt X))

The program uses the metric tensor inputs to evaluate the Christoffel
symbols of the first and second kinds. In order to reduce the amount of out-
put, the Christoffel symbols of the first kind are not printed out. In terms
of the system coordinates and the unknown functions L and M, the Christoffel
symbols of the second kind are

T(1,1,1) = (1723 (x1))

T(1,1,2) = 0
T(1,1,3) = 0
T(1,1,4) = 0
T(1,2,1) = 0

T(1,2,2) = 1/X(1)

T(1,2,3) = 0
T(1,2,4) = 0
T(1,3,1) =0




T(1,3,2)
T(1,3,3)
T(1,3,4)
T(1,4,1)
T(1,4,2)
T(1,4,3)
T(1,4,4)
T(2,1,1)
T(2,1,2)
T(2,1,3)
T(2,1,4)
T(2,2,1)
T(2,2,2)
T(2,2,3)
T(2,2,4)
T(2,3,1)
T(2,3,2)
T(2,3,3)
T(2,3,4)
T(2,4,1)
T(2,4,2)
T(2,4,3)
T(2,4,4)
T(3,1,1)
T(3,1,2)

T(3,1,3)

0
(1/2)M(l)-(X(1))

0

1/X(1)

0

0

b Gy g

0

0

0

0

0
COS(X(2))/SIN(X(2))
0

0

0

0

0

0

0

1/X(1)



T(3,1,4)

T(3,2,1)
T(3,2,2)
T(3,2,3)
T(3,2,4)
T(3,3,1)
T(3,3,2)
T(3,3,3)
T(3,3,4)
T(3,4,1)
T(3,4,2)
T(3,4,3)
T(3,4,4)
T(4,1,1)
T(4,1,2)
T(4,1,3)
T(4,1,4)
T(4,2,1)
T(4,2,2)
T(4,2,3)
T(4,2,4)
T(4,3,1)
T(4,3,2)
T(4,3,3)

T(4,3,4)

T(4,4,1)

0
0

COS (X(2))/SIN(X(2))

0

7l M gin? x 2))x (1)
~C0S (X (2))SIN(X(2))

0

0

0
0
/v xay)
0

0

0

0

B eee——




T(4,4,2) = 0
T(4,4,3) =0
T(4,4,4) = 0

Once the Christoffel symbols of the second kind are known the components
of the Ricci tensor can be derived. The individual components are

R(1,1)

R(1,2)
R(1,3)
R(1,4)
R(2,1)

R(2,2)

R(2,3)
R(2,4)
R(3,1)
R(3,2)

R(3,3)

R(3,4)
R(4,1)
R(4,2)

R(4,3)

LD x@)y/x-azam® - xan® - @xay

+/aM® 2xayye/2n@ - xay
0

0

0

0

_yE Y AN M xayyxy+ /2™ T xayyxa)
gL (X))

0

0

0

0

~/2E @I LM yyysN? (x(2))x(1)

/2 L XM Ly gyys182 (x(2))x 1)+~ F D gin? (x(2))

_SIN? (X(2))



R(4,4) = -g70 XM XY oy ayy /x )
ayg-ls XA XM 24 4y,

~qyzyp T KA )

G(I,J) and R(I,J) are both known at this stage of the program; therefore
the Ricci scalar can be obtained. It is given by the following equation

R = 28 L (X)) jy (1920 p L XA LML (x (1)) /x (1)

2L RO L gy x 1y - a/2)E™E ROy 2 x4y
w7208 RNy WL (xayy-g b FOIND  (x )y 2/x (1)

The preceding information is next used to obtain the field equations.
The individual equations are

Er(1,1) = £ ) x )2 M (xayy s @l Ty

b W WL x xRN iy 1y /x (1)

~a/omB 2yt W)

s/ xant® . xayys e FMyar2m® . xayy/Et ),
r/aE s RO 2x 13y a/aye™ KOy xay

L (/20 ) (xyy-1/x(1)?

ET(1,2) = 0
ET(1,3) = 0
ET(1,4) = 0
ET(2,1) = 0

10




ET(2,2) = -(1/2)E"% RO LMW [ xayyxay+ /et Cy@ L x1yy/x (1)

e/aye”t KDY 20 )y a/aye™t FOI D x a1y ® . xyy

s/2)E™ KNI x1y)

ET(2,3) = 0

ET(2,4) = 0

ET(3,1) = 0

ET(3,2) = 0

ET(3,3) = -(1/2)E L XL MW xnyyxeny« /2™ @D iy 1y /31y
w174yl XA 2y 13y 7aye L XD [y (133 D  (x 1)
+(1/2)E'L'(X(l))M(Z)-(X(l))

ET(3,4) = 0

ET(4,1) = 0

ET(4,2) = 0

ET(4,3) = 0

ET(4,4) = =" (X1 )y 2 gL XU L ()L w1y /x (1) -1/%(1) 2

The choice of an energy momentum tensor completes the specification of
this type of model. Solution of the resulting equations gives rise to the
components of the potential function. In the case under consideration, the
solution yields the unknown functions L{(x!) and M(x!). 1In terms of the
postulated metric tensor inputs, the computer derives the equation of the
trajectories as follows:

A1) = -/2tW . xayyvay et AWy ayv)?

L XA grn2 (x2))x (1) V(3)
_(1/2yE L (XM Xy (A) | (x (1yyy(4)2

11



~2V(2)V(1)/X(1)+COS (X(2))SIN(X(2))IV(3) >

AC2) =
A(3) = -2V(3)V(1)/X(1)-2C0S(X(2))V(3)V(2)/SIN(X(2))
a@) = MM xanvayva

Isotropic model— If the universe is isotropic, the line element will
assume the form of equation (20). When the corresponding metric tensors
{eq. (19)) were used as inputs to the computer program, the following output
was obtained.

The metric coefficients determine the gravitational model being studied.
In order that each run be identified with the correct inputs, the postulated
metric coefficients are printed out before the main results. In the case
under consideration, these have the following values:

6(1,1) = -7 (X))

G(2,2) = -gF X))y (142

6(3,3) = -BX XD x2))x(1)2
G(4,4) = g (X(1))

The program uses the metric tensor inputs to evaluate the Christoffel
symbols of the first and second kinds. 1In order to reduce the amount of out-
put, the Christoffel symbols of the first kind are not printed out. In terms
of the system coordinates and the unknown functions L and M, the Christoffel
symbols of the second kind are:

/2P xay

T(1,1,1) =

T(1,1,2) = 0
T(1,1,3) = O
T(1,1,4) = 0
T(1,2,1) = 0

T(1,2,2) = 1/x1)+ (/2L xay)

T(1,2,3) = 0
T(1,2,4) = 0
T(1,3,1) = 0

12



T(1,3,2)
T(1,3,3)
T(1,3,4)
T(1,4,1)
T(1,4,2)
T(1,4,3)
T(1,4,4)
T(2,1,1)
T(2,1,2)
T(2,1,3)
T(2,1,4)
T(2,2,1)
T(2,2,2)
T(2,2,3)
T(2,2,4)
T(2,3,1)
T(2,3,2)
T(2,3,3)
T(2,3,4)
T(2,4,1)
T(2,4,2)
T)2,4,3)
T(2,4,4)
T(3,1,1)
T(3,1,2)

T(3,1,3)

0
xy+@/2aL xan
0

0

0

0

(/2v® . x 1))

0

1/xy+ (/2018 (x (1))
0

0

X0 - /210 xaynxm?
0

0

0

0

0

COS(X(2))/SIN(X(2))

0

0

0

0

0

0

0

yx+ /220 (xaay)
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T(3,1,4)
T(3,2,1)
T(3,2,2)
T(3,2,3)
T(3,2,4)
T(3,3,1)
T(3,3,2)
T(3,3,3)
T(3,3,4)
T(3,4,1)
T(3,4,2)
T(3,4,3)
T(3,4,4)
T(4,1,1)
T(4,1,2)
T(4,1,3)
T(4,1,4)
T(4,2,1)
T(4,2,2)
T(4,2,3)
T(4,2,4)
T(4,3,1)
T(4,3,2)
T(4,3,3)
T(4,3,4)

T(4,4,1)

COS(X(2))/SIN(X(2))
0

SSIN? (x(2))x (1) -1/728 - (x 1)) sIN? (X (2))X (1)
~COS (X(2))SIN(X(2))

0

0

0

0
0
w2mH . xay
0
0

0

0

0




Once the

T(4,4,2) = 0
T(4,4,3) = 0
T(4,4,4) =0

Christoffel symbols of the second kind are known, the components

of the Ricci tensor can be derived. The individual components are:

R(1,1) =

R(1,2) =
R(1,3) =
R(1,4) =

R(2,1) =

R(2,2) =

R(2,3) =
R(2,4) =
R(3,1) =

R(3,2) =

R(3,3) =

L)y y/xay - azam . xant®- any+azam 2 xa)

2@ xan+a/2an® . xay)
0
0
0

0

/2L xanxay+a/am . xaxay+ a2 xax ?

s/t xanxa a2t xanxm?

0

/2L oxyysINZ (x(2))x (1) + (1/2M) L (x (1)) sING (x(2))X (1)
+1/)1M Zxayysv? (x(2)x(1)°

/oMM xan M- x)s’ x@2)x

+1/2) L9 x))sIN (X (2))x (1) ?

15



R(3,4) = 0

R(4,1) = O

R(4,2) = 0

R(4,3) = 0

REL4) = -p-L XM XY | (133 /x(1)
_(/ayE"l KA (D), 24 (13,
- /ayEk KADHE XYM )y D (1))
/2y XM XY@y

G(I,J) and R(I,J) are both known at this stage of the program; therefore
the Ricci scalar can be obtained. It is given by the following equation

R = -4p"2 XA MW x1yy/xay-2e 2 RO (v ayy/x 1)

-/t XON LM 2xayy - /e BN 2 ¢
-/ KO iy LM xayy 267t LB (x 1y

The preceding information is next used to obtain the field equations.
The individual equations are

Ercn,1) = -t xy/@d FWyx@ye2emt B xayy/xa)

71 COND L xayy/x- /a2 exyys @t Gy
ca/amD . xant® . xayys e X0y @ xayyy et KA,

/2@ x )y g Oy s 74yl RO L) 2x (1)

s/l XM 2 g (1yy4 (/4 t CFOIYD L x 1)yt xay

£ KDL xayys /e FOIE . xay)

16



ET(1,2) = 0

ET(1,3) = 0
ET(1,4) = 0
ET(2,1) = 0

ET(2,2) = (1/2)E % KON M xayyxy+ /2™ T xayy/xa)
s/E L RN 2y 49y, 172y RO L2 x(1y)

s1/2)E" L XA (x 1y

ET(2,3) = 0
ET(2,4) = 0
ET(3,1) = 0
ET(3,2) = 0

ET(3,3) = (1/2)E 0 XD My 1yyxy+az2)e™ F@IyD xayy/xa)
w1/ L XYM 25 1yy4 (172) 7L R L) [y (1

+(1/2)E" L FANY(D (x(1y)y

ET(3,4) = 0

ET(4,1) = 0
ET(4,2) = 0
ET(4,3) = 0

-L- (X(1)) (1) 2

ET(4,4) = 28" XDy 1yy/x 1)+ (1/8)E (X(1))

+E—L'(X(1))L(2)'(X(l))
The trajectory equations for the isotropic case are:
- (1) 2 2 (1), 2 2
A(l) = -(1/2)L>"7- (X(1))V()"+X(1)V(2) "+ (1/2)L (X(1))X(1)"v(2)
+SIN? (X(2))X(DIV(3) %+ (17220 D) L (x(1))sIN? (x (2)) X (1) 2V (3) 2

17



A2) = -2v(2)V(1)/X(1)-L) - (X(1))V(2)V(1)+COS (X(2))SIN(X(2))V(3)?

AG3) = -2v(3)V (L) /x(1) -1 (X (1))V(3)V(1)-2C08 (X (2))V(3)IV(2) /SIN(X(2))

a@) = v xvava)

Static homogeneous models— In the case of a static homogeneous universe,
it is evident that coordinates can be chosen so that the line element will
exhibit spherical symmetry around any desired origin, since all parts of the
universe are permanently alike. Hence, the line element may be taken in the
spherically symmetric static form of equation (18). 1In obtaining this form of
line element, local irregularities in the gravitational field, which would
occur in the immediate neighborhood of individual stars or stellar systems,
are neglected.

For the system described, it can be shown that the components of the
energy momentum tensor are:

ET(1,1) = ET(2,2) = ET(3,3) = 8mup
ET(4,4) = -8mp (21)
ET(I,J) = 0O for 1 #J

where p, and Py are the pressure and density, respectively, as measured by
an observer who is at least momentarily at rest with respect to the spatial
axes. The solution of these equations gives rise to the components of the
potential function. In the case of the field being considered, the solution
yields the unknown functions L(xl) and M(xl).

In order to satisfy the conditions of static homogeneity, it can be shown
that the implicit functions L(xl) and M(xl) are subject to the following
constraints: If the model is homogeneous, the pressure as measured by a local
observer will be the same everywhere. Again, owing to the assumed homogeneity
of the model, the density will be the same everywhere. Moreover, the line
element must reduce to the special relativity form, for flat space-time, owing
to the known validity of the special theory in such regions. By imposing
these conditions, it can be shown that there are only three possibilities for
a static homogeneous model (ref. 8):

M=0 (22)
L+M=0 (23)
L=M=0 (24)

These conditions lead respectively to the Einstein, the de Sitter, and the
special relativity line elements.
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The Einstein model universe— Substitution from equation (22) in
equation (18) yields the following metric for a homogeneous model which is not
isotropic.

ds? = [—eL(Xl)(dxl)z - (x! dax2)? - (x! sin x2 dx3)2 « (dx“)z] (25)

If the model were assumed to be homogeneous and isotropic, it would be
necessary to use equation (20) subject to the constraint equation (22).

Cosmological considerations led Einstein to consider a universe defined
by the metric (25). When the metric coefficients were supplied as input to
the computer program, the following output was obtained.

The metric coefficients determine the gravitational model being studied.
In order that each run be identified with the correct inputs, the postulated
metric coefficients are printed out before the main results. In the case
under consideration, these have the following values:

G(1,1) = -EL' (X(1))
G(2,2) = -X(1)2

G(3,3) = -SIN®(X(2))X(1)?
G(4,4) = 1

The program uses the metric tensor inputs to evaluate the Christoffel
symbols of the first and second kinds. In order to reduce the amount of out-
put, the Christoffel symbols of the first kind are not printed out. In terms
of the system coordinates and the unknown functions L and M, the Christoffel
symbols of the second kind are

1,1, = (/P xay)

T(1,1,2) = O
T(1,1,3) = O
T(1,1,4) = 0
T(1,2,1) = 0
T(1,2,2) = 1/X(1)
T(1,2,3) = 0
T(1,2,4) = O
T(1,3,1) = 0
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T(1,3,2)

T(1,3,3)
T(1,3,4)
T(1,4,1)
T(1,4,2)
T(1,4,3)
T(1,4,4)
T(2,1,1)
T(2,1,2)
T(2,1,3)
T(2,1,4)
T(2,2,1)
T(2,2,2)
T(2,2l3)
T(2,2,4)
T(2,3,1)
T(2,3,2)
T(2,3,3)
T(2,3,4)
T(2,4,1)
T(2,4,2)
T(2,4,3)
T(2,4,4)
T(3,1,1)
T(3,1,2)

T(3,1,3)

0
1/X(1)
0

0

0

0

0

0
1/X(1)
0

0

gL )y g,
0

0

0

0

0
COS(X(2))/SIN(X(2))
0

0

0

0

0

0

0

1/X(1)




T(3,1,4)
T(3,2,1)
T(3,2,2)
T(3,2,3)
T(3,2,4)
T(3,3,1)
T(3,3,2)
T(3,3,3)
T(3,3,4)
T(3,4,1)
T(3,4,2)
T(3,4,3)
T(3,4,4)
T(4,1,1)
T(4,1,2)
T(4,1,3)
T(4,1,4)
T(4,2,1)
T(4,2,2)
T(4,2,3)
T(4,2,4)
T(4,3,1)
T(4,3,2)
T(4,3,3)
T(4,3,4)

T(4,4,1)

COS(X(2))/SIN(X(2))

0

b X2 x2))x (1)
~COS (X (2))SIN(X(2))

0

0

0
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T(4,4,2) = 0
T(4,4,3) = 0
T(4,4,4) = 0

Once the Christoffel symbols of the second kind are known, the components
of the Ricci tensor can be derived. The individual components are

rR(1,1) = -L x)/x

R(1,2) = 0
R(1,3) = O
R(1,4) = 0O
R(2,1) = 0
R(2,2) = -(1/2E L AL xyyxeny+7t K
R(2,3) = 0
R(2,4) = O
R(3,1) = 0
R(3,2) = O

R(3,3) = -(1/20E 2 KA LM x1yyson? x)xy+e L EDgin? (x2))

SSIN? (X(2))
R(3,4) = 0
R(4,1) = 0
R(4,2) = 0
R(4,3) = 0
R(4,4) = 0

G(I,J) and R(I,J) are both known at this stage of the program; therefore
the Ricci scalar can be obtained. It is given by the following equation

R = -2 L (X)) y 92,25~ XA (D x0yy /%1y +2/% (1) 2
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The preceding information is next used to obtain the field equations.
The individual equations are

Er(1,1) = B & R xy 2 W oxc1yy /@ FWyxay

_E-L-(X(l))L(l).(x(l))/x(l)-l/x(l)2

ET(1,2) = 0
ET(1,3) = 0
ET(1,4) = 0
ET(2,1) = 0

ET(2,2) = -(1/2)E L RN vayy/x 1)

ET(2,3) = 0
ET(2,4) = 0
ET(3,1) = 0
ET(3,2) = 0

ET(3,3) = -(1/2)E = XMW ey enyy/xan

ET(3,4) = 0
ET(4,1) = ¢
ET(4,2) = 0
ET(4,3) = 0

ET(4,4) = 1" (X(1D) xqy2 g7 XA (D) ey enyy /x 1) -1/x (1) 2

The equations of the corresponding trajectories are:

Ay = B2 Mg xeznyxayves) 2-/2t P xayyveny el My v 2)?

A(2) = -2V(2)V(1)/X(1)+C0S (X(2))SIN(X(2))V(3)?

A(3)

~2V(1)V(3)/X(1)-2C08 (X(2))V(2)V(3)/SIN(X(2))

0

A(4)
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The de Sitter model— As already indicated, the only other general
relativistic model that is static and homogeneous is the de Sitter universe.
In the next section the Schwarzschild model will be considered. It will be
found to have the same form, although not the same content as the de Sitter
model. Although the Schwarzschild universe is inhomogeneous, the implicit
functions L(x!) and M(x!) that satisfy its field equations also satisfy
equation (23). In view of these considerations the de Sitter model will not

be formulated.

A nonhomogeneous case— The Schwarzschild model represents a specially
important application of relativity theory, since it provides a treatment of
the gravitational field surrounding the sun. This problem was first studied
by Schwarzschild in 1916, and the results obtained were used to distinguish
between the predictions of the Newtonian theory of gravitation and the more
exact predictions of relativity theory. Since the space surrounding the sun
is assumed to be devoid of matter, all the components of the energy momentum
tensor are zero. In this case, the field equations have been shown to satisfy

equation (12). That is:

Rij =0 (26)
Therefore, the components of the Ricci tensor obtained for the anisotropic
model and satisfying equation (26) yield the components of the potential

function for the field surrounding a single attracting mass, which is
spherically symmetric.

In terms of conventional mathematical symbolism, the Schwarzschild field
equations assume the following form:

1 &M 1 dL aM 1( dM>2 1 dL
R, =|= - = + = ) - =% 1-0 27
11 [2 dx1 clx1 4 dedx1 4 521 x! 1 27)

=
N
N
It
e —
OI
ol
[y 1
N
~
—
N
&
&
1
[a N
~le
=
N’
| C—
|
et
—
1i
o
amn)
[\
oo
p—g

. -L x! / am dL
R sin? x2{e {1 + ~—-< - )] -1} =0 29
33 { [ 2 \ax!  ax! /! (29)
M-L]1 dL dM 1 d2M 1 dM 1 dM2
R”“ © [de1 d I E—dxl dx! ) ;de1 ) 71-<dx1> } =0 (30)
R..=0 for i # j

The corresponding trajectory equations are:
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2
a2 _|_1dn (&Y | -pafax?)”
ds? 2 dxl ds ds

+ el sin2 x2 . x! QEE-Z 1 M-L M ézt-z (31)
ds T2 dx! \ ds
2,2 1 3.2 3\2
35§ = [— ;%_ég__ég__+ sin x2 cos x2<g§—) ] (32)
X
d2x3 2 dx! dx3 5 dx? dx3
452 -<';Ta;'as—‘2°°” ds ds (33)

(34)

d2x* _ (_ dM  dx! dx”)
ds?

It is seen that

R,. = sin? x2 - R

33 22

and there are therefore only three equations in L and M. 1In this connection,
it should be noted that the 10 equations given by equations (8) or (12) are
not all independent since, theoretically at least, they would then determine
completely the metric tensor and would restrict the choice of reference system.
Therefore, there can be no more than six independent conditions between the
components of Rjj to permit a free choice of coordinate system in
four-dimensional space (ref. 8).

The system of 10 nonlinear partial differential equations

R.. =0

1]

for the 10 unknown functions g;j;i 1is very complicated. The general solution
of this system is not known. However, for the case considered in this paper,
it is possible to obtain a closed-form solution. It can easily be deduced
that

and
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Hence,

g, = -1/[1 + (a/x1)] )
gy, = ~(x1)?
b (35)
833 = —(x1 sin x2)2
Eyy = 1 + (a/xl) S

If a = -2m, the metric (35) is consistent with the existence of one
gravitating mass (m) situated at the origin and surrounded by empty space.

1f the metric tensor inputs (eqs. (17)) consisting of unknown functions

of x! are now replaced by the known functions (35), and the program re-run,
the trajectory equations are obtained in the following form:

8 o (B 2)(E
ds? 2(X1)2[1 + (a/x1)] ds x! ds

3\2 1 4\2
_ x1 sin2 x2<1 + _a1_> <g’s( ) _all + (a/x7)] (gi) =0  (36)
X 2(x1)2 s
d2x2 2 dx! dx? . 2 2 (dx3 z -
[EEE_‘+ Tds g5 - Sim x? cos x* | g =0 (37
d?x3 2 dx! dx3 o dx?2 dx3
<d52 + Tds ds + 2 cot x 45 ds ) ° 0 (38)
2,4 bogx*
d )2( _ a ~ dx- dx =0 (39)
ds (x1)2[1 + (a/x1y] 95 9

CONCLUSIONS

Symbolic mathematical computation can facilitate the formulation of
mathematical models. This has been demonstrated by using the method to recon-
struct several existing cosmological models and their associated trajectory
equations. It has been shown that such models can be derived with speed and
efficiency on present generation computers, provided they are equipped with
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formula manipulation compilers. For example, in the case of the Einstein and

de Sitter models, the computer times required to formulate the field and tra-
jectory equations were 0.66 and 0.32 minutes, respectively. For the nonhomo-
geneous Schwarzschild model, the corresponding times were 0.74 and 0.30 minutes,
respectively. In addition to saving man-hours and the errors to which humans
are prone, the method facilitates the study of a greater variety of models.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, June 16, 1970
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